EXAMPLE 13 Free-Falling Objects. The formula $s = 16t^2$ is used to approximate the distance s, in feet, that an object falls freely from rest in t seconds. The highest point of the Mike O'Callaghan-Pat Tillman Memorial Bridge is 890 ft above the Colorado River. How long will it take a stone to fall from the bridge to the river? Round to the nearest tenth of a second. Source: www.desertusa.com

SOLUTION

- 1. Familiarize. We agree to disregard air resistance and use the given formula.
- 2. Translate. We substitute into the formula:

$$s = 16t^2$$

$$890 = 10t^{-1}$$

3. Carry out. We solve for t:

$$890 = 16t^2$$

$$55.625 = t^2$$

$$\sqrt{55.625} = t$$

 $7.5 \approx t.$

Using the principle of square roots; rejecting the negative square root since t cannot be negative in this problem Using a calculator and rounding to the nearest tenth

4. Check. Since $16(7.5)^2 = 900 \approx 890$, our answer checks.

FOR EXTRA HELP

5. State. It takes about 7.5 sec for a stone to fall freely from the bridge to the river.

Try Exercise 85.

Concept Reinforcement Complete each of the

following to form a true statement. 1. The principle of square roots states that if $x^2 = k$,

Exercise Set

- then x =____ or x =____. \sqrt{k} ; $-\sqrt{k}$
- 2. If $(x + 5)^2 = 49$, then x + 5 =____ or x + 5 = ---, 7; -7
- **3.** If $t^2 + 6t + 9 = 17$, then $(__)^2 = 17$ and $__= \pm \sqrt{17}$. t + 3; t + 3
- 4. The equations $x^2 + 8x + \underline{16} = 23$ and $x^2 + 8x = 7$ are equivalent.
- 5. The expressions $t^2 + 10t + 25$ and $(t + 5)^2$ are equivalent.
- 6. The expressions $x^2 6x + 9$ and $(x 3)^2$ are equivalent.

Determine the number of real-number solutions of each equation from the given graph.

Math yp

7. $x^2 + x - 12 = 0$ 2 $y = x^2 + x - 12$

0

9. $4x^2 + 9 = 12x$ 1 $y = 12x - 4x^2 - 9$

606

CHAPTER 8 Quadratic Functions and Equations

Solve.

Aha!

JUIVE.	
13. $x^2 = 100 \pm 10$	14. $t^2 = 144 \pm 12$
15. $p^2 - 50 = 0 \pm 5\sqrt{2}$	16. $c^2 - 8 = 0 \pm 2\sqrt{2}$
17. $4x^2 = 20 \pm \sqrt{5}$	18. $7x^2 = 21 \pm \sqrt{3}$
19. $x^2 = -4 \pm 2i$	20. $x^2 = -9 \pm 3i$
21. $9x^2 - 16 = 0 \pm \frac{4}{3}$	22. $25x^2 - 4 = 0 \pm \frac{2}{5}$
23. $5t^2 - 3 = 4$.	24. $3t^2 - 1 = 6$:
25. $4d^2 + 81 = 0 \pm \frac{9}{2}i$	26. $25y^2 + 16 = 0 \pm \frac{4}{5}i$
27. $(x-1)^2 = 49 - 6, 8$	28. $(x + 2)^2 = 25 - 7, 3$
29. $(a - 13)^2 = 18$	30. $(a + 5)^2 = 8$.
31. $(x + 1)^2 = -9 - 1 \pm 3i$	32. $(x-1)^2 = -49$.
33. $\left(y + \frac{3}{4}\right)^2 = \frac{17}{16}$.	34. $\left(t + \frac{3}{2}\right)^2 = \frac{7}{2}$.
35. $x^2 - 10x + 25 = 64$	36. $x^2 - 6x + 9 = 100_{-7,13}$
37. Let $f(x) = x^2$. Find x such	that $f(x) = 19. \pm \sqrt{19}^{7, 13}$
38. Let $f(x) = x^2$. Find x such	that $f(x) = 11. \pm \sqrt{11}$
39. Let $f(x) = (x - 5)^2$. Find	f(x) = 16. 1, 9
40. Let $g(x) = (x - 2)^2$. Find	d x such that $g(x) = 25, -3, 7$
41. Let $F(t) = (t + 4)^2$. Find	t such that $F(t) = 13$.
42. Let $f(t) = (t + 6)^2$. Find	t such that $f(t) = 15$.
43. Let $g(x) = x^2 + 14x + 4$	19. Find x such that $-6 \pm \sqrt{15}$
g(x) = 4914, 0	
44. Let $F(x) = x^2 + 8x + 16$ F(x) = 97, -1	Find x such that
Replace the blanks in each equat	ion with constants to
complete the square and form a true equation.	

45.
$$x^{2} + 16x + \underline{04} = (x + \underline{8})^{2}$$

46. $x^{2} + 8x + \underline{16} = (x + \underline{4})^{2}$
47. $t^{2} - 10t + \underline{25} = (t - \underline{5})^{2}$
48. $t^{2} - 6t + \underline{9} = (t - \underline{3})^{2}$
49. $t^{2} - 2t + \underline{1} = (t - \underline{1})^{2}$
50. $x^{2} + 2x + \underline{1} = (x + \underline{1})^{2}$

51. $x^2 + 3x + \frac{\frac{9}{4}}{\frac{81}{4}} = (x + \frac{\frac{3}{2}}{\frac{9}{2}})^2$ 52. $t^2 - 9t + \frac{\frac{81}{4}}{\frac{4}{4}} = (t - \frac{\frac{9}{2}}{\frac{2}{2}})^2$ 53. $x^2 + \frac{2}{5}x + \frac{\frac{1}{25}}{\frac{25}{5}} = (x + \frac{\frac{1}{5}}{\frac{5}{2}})^2$ 54. $x^2 + \frac{2}{3}x + \frac{\frac{1}{9}}{\frac{9}{4}} = (x + \frac{\frac{1}{3}}{\frac{3}{2}})^2$ 55. $t^2 - \frac{5}{6}t + \frac{\frac{25}{144}}{\frac{144}{3}} = (t - \frac{\frac{5}{12}}{\frac{12}{2}})^2$ 56. $t^2 - \frac{5}{3}t + \frac{\frac{25}{36}}{\frac{25}{6}} = (t - \frac{\frac{5}{6}}{\frac{6}{2}})^2$

Solve by completing the square. Show your work.

57. $x^2 + 6x = 7$ -7, 1 **58.** $x^2 + 8x = 9$ -9, 1 **59.** $t^2 - 10t = -23$ $5\pm\sqrt{2}$ **60.** $t^2 - 4t = \frac{2\pm\sqrt{3}}{-1}$ **61.** $x^2 + 12x + 32 = 0$ **62.** $x^2 + 16x + 15 = 0$ **63.** $t^2 + 8t - 3 = 0$ $-4 \pm \sqrt{19}$ **64.** $t^2 + 6t - 5 = 0$ $-3 \pm \sqrt{14}$

Complete the square to find the x-intercepts of each function given by the equation listed. **65.** $f(x) = x^2 + 6x + 7$ **66.** $f(x) = x^2 + 10x - 2$ **67.** $g(x) = x^2 + 9x - 25$ **68.** $g(x) = x^2 + 5x + 2$ **69.** $f(x) = x^2 - 10x - 22$

70. $f(x) = x^2 - 8x - 10$

Solve by completing the square. Remember to first divide, as in Example 11, to make sure that the coefficient of x^2 is 1.

- **71.** $9x^2 + 18x = -\frac{8}{-\frac{4}{3}}, -\frac{2}{3}$ **73.** $3x^2 - 5x - 2 = 0, -\frac{1}{3}, 2$ **74.** $2x^2 + 8x = -3$ **75.** $5x^2 + 4x - 3 = 0$ **76.** $4x^2 + 3x - 5 = 0$
- 77. Find the x-intercepts of the function given by $f(x) = 4x^2 + 2x 3$.
- 78. Find the x-intercepts of the function given by $f(x) = 3x^2 + x 5$.
- 79. Find the *x*-intercepts of the function given by $g(x) = 2x^2 3x 1$.
- 80. Find the *x*-intercepts of the function given by $g(x) = 3x^2 5x 1$.

Interest. Use $A = P(1 + r)^t$ to find the interest rate in *Exercises* 81–84. *Refer to Example 12.*

- 81. \$2000 grows to \$2420 in 2 years 10%
- 82. \$1000 grows to \$1440 in 2 years 20%
- **83.** \$6250 grows to \$6760 in 2 years 4%
- **84.** \$6250 grows to \$7290 in 2 years 8%

⊡ Answers to Exercises 23, 24, 30, 32–34, 65–70, and 75–80 are on p. IA-17.

Free-Falling Objects. Use $s = 16t^2$ for Exercises 85–88. Refer to Example 13 and neglect air resistance.

85. The Grand Canyon skywalk is 4000 ft above the Colorado River. How long will it take a stone to fall from the skywalk to the river? About 15.8 sec Source: www.grandcanyonskywalk.com

- **86.** The Sears Tower in Chicago is 1454 ft tall. How long would it take an object to fall freely from the top? About 9.5 sec
- 87. At 2063 ft, the KVLY-TV tower in North Dakota is the tallest supported tower in the United States. How long would it take an object to fall freely from the top?
 Source: North Dakota Tourism Division About 11.4 sec
- 88. El Capitan in Yosemite National Park is 3593 ft high. How long would it take a carabiner to fall freely from the top? About 15.0 sec Source: Guinness World Records 2008

- 89. Explain in your own words a sequence of steps that can be used to solve any quadratic equation in the quickest way.
- № 90. Describe how to write a quadratic equation that can be solved algebraically but not graphically.

SKILL REVIEW

To prepare for Section 8.2, review evaluating expressions and simplifying radical expressions (Sections 1.2, 7.3, and 7.8).

Evaluate. [1.2]	
91. $b^2 - 4ac$, for a	= 3, b = 2, and c = -5 64
92. $b^2 - 4ac$, for a	= 1, b = -1, and c = 4 -15
Simplify. [7.3], [7.8]	
93. $\sqrt{200}$ 10 $\sqrt{2}$	94. $\sqrt{96}$ $4\sqrt{6}$
95. $\sqrt{-4}$ 2 <i>i</i>	96. $\sqrt{-25}$ 5 <i>i</i>
97. $\sqrt{-8}$ $2i\sqrt{2}$, o	or $2\sqrt{2}i$ 98. $\sqrt{-24}$
	$2i\sqrt{6}$, or $2\sqrt{6}i$

SYNTHESIS

- **1**№ **99.** What would be better: to receive 3% interest every 6 months or to receive 6% interest every 12 months? Why?
- $extsf{N}$ 100. Example 12 was solved with a graphing calculator by graphing each side of

$$4410 = 4000(1 + r)^2.$$

How could you determine, from a reading of the problem, a suitable viewing window?

Find b such that each trinomial is a square. ± 14 101. $x^2 + bx + 81 \pm 18$ 102. $x^2 + bx + 49$ 103. If $f(x) = 2x^5 - 9x^4 - 66x^3 + 45x^2 + 280x$ and

- **103.** If $f(x) = 2x^2 9x^2 66x^2 + 45x^2 + 280x$ and $x^2 5$ is a factor of f(x), find all *a* for which f(a) = 0. $-\frac{7}{2}, -\sqrt{5}, 0, \sqrt{5}, 8$
- **104.** If $f(x) = (x \frac{1}{3})(x^2 + 6)$ and $g(x) = (x \frac{1}{3})(x^2 \frac{2}{3})$, find all *a* for which $\frac{1}{3}, \pm \frac{2\sqrt{6}}{3}i$ (*f* + *g*)(*a*) = 0.
- **105.** *Boating.* A barge and a fishing boat leave a dock at the same time, traveling at a right angle to each other. The barge travels 7 km/h slower than the fishing boat. After 4 hr, the boats are 68 km apart. Find the speed of each boat. Barge: 8 km/h; fishing boat: 15 km/h

106. Find three consecutive integers such that the square of the first plus the product of the other two is 67. 5, 6, 7

Try Exercise Answers: Section 8.1 **13.** ± 10 **17.** $\pm \sqrt{5}$ **23.** $\pm \sqrt{\frac{7}{5}}$, or $\pm \frac{\sqrt{35}}{5}$ **25.** $\pm \frac{9}{2}i$ **35.** -3, 13 **41.** -4 $\pm \sqrt{13}$ **45.** $x^2 + 16x + 64 = (x + 8)^2$ **57.** -7, 1 **65.** $(-3 - \sqrt{2}, 0), (-3 + \sqrt{2}, 0)$ **71.** $-\frac{4}{3}, -\frac{2}{3}$ **81.** 10% **85.** About 15.8 sec